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ABSTRACT 

All speech recognition systems, whether speaker-independent or speaker- de- 
pendent, require large amounts of training data to estimate the model parameters 
and, generally, the more training data available, the better the recognition per- 
formance. To improve the recognition performance of a system for a new speaker 
without having to train entirely new models, adapting the existing models during 
the recognition process is a practical solution. This report describes an investiga- 
tion into the subject of recognition-time speaker adaptation of a tied-mixture HMM 
recognition system, with the goal of implementing a system which adapts to a new 
speaker during the course of its usage. 
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1.   INTRODUCTION 

Considering the large amounts of data required to train the models for a speaker-dependent 
(SD) or speaker-independent (SI) continuous speech recognizer (CSR), adaptation of the existing 
models to a new speaker using relatively small amounts of data can be a desirable alternative. 

In the rapid enrollment approach to adaptation, a small amount of data is collected from 
the new speaker to modify a prior set of model parameters and these new parameters are used to 
recognize the incoming utterances [3,7,8]. In this report, we present the results of a study whose 
goal is to achieve a recognition system which starts with a set of speaker-dependent or speaker- 
independent initial acoustic models and continuously adapts itself as it is being used by the current 
speaker, in an either supervised or unsupervised fashion. 

The supervised adaptation scheme requires that the recognition output be corrected by the 
speaker if it is erroneous, while the unsupervised version simply uses the unconnected recognizer 
output for adaptation. 

The recognition system used to investigate this adaptation problem is the Lincoln large- 
vocabulary continuous speech recognizer, which is a stack-decoder based system with tied-mixture 
Gaussian Hidden Markov Model (HMM) acoustic models [4,5,6]. In particular, the acoustic models 
used in the recognizer for this work are non-cross-word semi-phone based, and provide a simpler 
framework for the initial research into the subject, compared to the more complex cross-word 
triphone based models that can also be used by the recognizer. [4,5]. 



2.   RECOGNITION-TIME SPEAKER ADAPTATION 

Using the recognized utterances instead of a pre-determined static set of spoken sentences to 
modify the recognizer models is what distinguishes recognition-time adaptation from rapid enroll- 
ment. The recognition-time adaptation is performed progressively on a sentence-by-sentence basis 
and therefore rapid enrollment, by accessing all the data at once, has the advantage of being a block 
process when the models are modified. Using a limited amount of data to modify the large number 
of parameters of the acoustic models requires robust estimation techniques and/or modification of 
only a selected subset of the parameters. On the other hand, rapid enrollment, which requires the 
user to record a set of sentences beforehand, lacks the ease of use of recognition-time adaptation. 

The Lincoln HMM CSR used for this research on recognition-time adaptation utilizes tied- 
mixture Gaussian semi-phone acoustic models. The observation probability at a given state s is 
given by a Gaussian tied-mixture density with M components: 

M 

P.(ot) = 5>'G'(°')> (!) 
»=i 

where ot is the observed frame vector at time t, Gi(ot) = JV(/it-,Et) and £«=ic« = 1- With 
the assumption of independence between the components of the observation vectors, E; becomes 
diagonal. The set of acoustic model parameters to be estimated during the training phase for 
the Lincoln HMM CSR consists of the Gaussian means (/*,) and grand variances (E = E,; Vi), 
which are tied across all the acoustic models, and the mixture weights (cta) and state transition 
probabilities. 

As recognition-time speaker adaptation requires parameter modification using small amounts 
of data, adapting all of the acoustic model parameters was not attempted. The tied-mixture 
Gaussian density framework offers a nice formalism for adaptation because during training, each 
and every observation contributes to all of the Gaussians in the mixture density, enabling robust 
estimation from small amounts of data. The initial investigations focused on the adaptation of only 
the Gaussian means of the existing set of tied-mixture semi-phone models, while keeping the grand 
Gaussian variances, mixture weights and other HMM parameters fixed. 

After recognition of each sentence, the Gaussian means are modified according to the obser- 
vation data. Since the amount of data from the recognized sentence is very small, new estimates 
must be smoothed by the previous values. Two methods for combining the initial/past models with 
the new data have been explored: (1) infinite memory, and (2) exponentially dying memory [2]. In 
both cases, the Viterbi alignment of the observations to the recognized sentence is used to make a 
new estimate of the Gaussian means with the Estimate-Maximize (EM) algorithm: 
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where the state sequence st is given by the Viterbi alignment of the observations o*. Since a non-tied 
mixture Gaussian can be viewed as a special case of a tied-mixture Gaussian, these reestimation 
equations also apply to non-tied mixtures. 

For the infinite memory case, to obtain the adapted mean, the new estimate of the mean 
(/i,new) is combined with the old mean as if the new data were pooled with the previous training 
data: 

/**old 2 7ft + /'«•new   X)  7ft 

"'adapted" £ 7,, +   £  7t, 
(2) 
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Upon completion of adaptation, the next sentence is recognized with the new parameter set 
and the same procedure is repeated. This has the effect of assigning less weight to the newly 
arriving data as adaptation continues, which slows down the adaptation speed. The exponentially 
dying memory case, keeps an exponentially decaying memory of the original models instead of an 
infinite one. This is achieved by linearly combining the existing Gaussian means with the means 
estimated from the observations of the newly recognized sentence: 

"'adapted = t1 " A) "«old + A ^^ ^ 

By fixing the adaptation weight A to a constant value, the contribution of the initial speaker- 
dependent or speaker-independent model to the adapted model is made to decay exponentially, 
which also gives a means of control over the speed of adaptation. The infinite memory case can be 
obtained by assigning 

S  7ft 
A= *€7V       » (4) 

2^ 7ft + Zs 7ft 
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instead of keeping it constant. For A = 0.1, the contribution of the initial non-adapted model to 
the adapted one becomes about 0.5% by the time 50 sentences are recognized. Setting A higher 
results in faster adaptation but since it results in noisier estimates of the parameters, the limit of 
the recognition performance may be poorer in the long run, whereas a smaller A gives a slower 
speed of adaptation, but may have a better performance limit. However, given that the purpose 
of adaptation is to improve performance with minimal effort, A could be set to be large at the 
beginning and made to decrease with the number of sentences that have been recognized so far, to 
achieve speed in the short term and have a better performance limit in the future. 



3.   EXPERIMENTS AND RESULTS 

The adaptation experiments are performed using the RM1 and RM2 sections of the DARPA 
Resource Management corpus. For cross-speaker adaptation tests, speaker-dependent models trained 
using two (one male, one female) of the four speakers of the RM2 database (2400 sentences per 
speaker) are adapted to the twelve RM1 test speakers and for speaker-independent adaptation tests, 
an RM1 speaker-independent (SI-109) model and a modified version is adapted to the same twelve 
RM1 test speakers. All the starting SD and SI models were trained with speaker and channel 
equalization, which was performed by subtracting the sentence average speech-only mel-cepstral 
observation vector from every mel-cepstral observation vector across the sentence. This can be 
viewed as a "dc" removal, resembling a portion of the RASTA methodology [1]. 

The available development test set for the SD-RM1 speakers consist of 100 sentences per 
speaker, and the results in Table 1 reflect the average word error (substitutions + insertions + 
deletions) rate over all twelve speakers, with their respective standard deviations. To observe the 
course of the continuing adaptation process, the set of 100 test sentences per speaker was divided 
into 25 sentence portions, and scored within each 25 sentence portion. 

As expected, supervised recognition-time adaptation results show that the exponentially de- 
caying memory achieves much better results than the infinite memory version. Several different A 
values were tested to find an optimum adaptation rate, and for the span of the available 100 test 
sentences, A=0.1 was decided to give the best trade-off between adaptation speed and long-term 
performance limit (Figure 1 and Figure 2). A smaller weight (A=0.04) was slower to adapt the 
system, while a larger one (A=0.2), although adapting faster, had a poorer recognition performance 
limit for almost all of the configurations. Actually, the self-adaptation experiments, in which the 
speakers' own models are used to adapt to their own utterances, show that the higher the adaptation 
rate the worse the long-term performance limit. 

The exponentially decaying memory adaptation is demonstrating a much better percentage 
performance improvement for the cross-speaker cases than it does for the speaker-independent case 
(Table 1 and Figures 1 and 2). Particularly, after adapting to 100 sentences (approximately 5 
minutes of speech), the cross-speaker/cross-gender case gets down to 15.6% word error rate (83.4% 
reduction in error) and the cross-speaker/same-gender case gets down to 9.5% word error rate 
(59.1% reduction), with respect to their control experiments, while the speaker-independent case 
gets down to 7.4% word error rate (36.8% reduction). Since the large set of mixture weights is kept 
fixed and only the Gaussian means are adapted, it is likely that the sharper distributions of the 
speaker-dependent models converge more rapidly to the new speaker's, while broad distributions 
of the speaker-independent models are slow to do so. The modified SI-109 model is trained in two 
phases [4]: during the first phase, estimation of SI mixture weights using a set of speaker-dependent 
Gaussian means is performed, and in the second phase, mixture weights are fixed and a single set 
of speaker-independent Gaussian parameters are trained. Because of the way the mixture weights 
are trained, this strategy is intended to give a "sharper" set of weights for the SI model (more like 



an SD model), which becomes more suitable to Gaussian-parameter-only speaker-adaptation. This 
is reflected in the results, and although the modified SI-109 starts with a poorer performance than 
the standard SI-109, after adapting to 100 sentences, it beats the other and goes down to 6.2% word 
error rate, achieving 55.7% reduction in error with respect to its non-adapted version (Table 1). 
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Figure 1.     Word error rates from Table 1, for the control and X=.l adaptation conditions. 
(Low error rate portion-below 15%- detailed in Figure 2). 

Using the optimum weight (A=0.1), the same set of experiments were conducted in an un- 
supervised fashion. The results obtained are very promising (Table 1 and Figure 3), suggesting 
that the system can adapt to a new user without any corrections by the user at the recognition 
stage. For all but cross-speaker/cross-gender adaptation experiments, the performance improve- 
ment difference between the supervised and unsupervised cases is statistically insignificant. But 
still, after adapting to 100 test sentences, cross-speaker/cross-gender configuration achieves the 
best percentage performance improvement among all the other schemes for both the supervised 
and unsupervised cases. In this configuration, from a non-adapted word error rate of 94.0%, su- 
pervised adaptation gets down to 20.7% (78.0% reduction) and the unsupervised case gets down 
to 30.1% (68.0% reduction) word error rate, for the last 25 test sentence portion. Even though our 
experiments show that a system which has more than 90% word error rate at the starting point 



TABLE 1 

Word error rate (%) with standard deviations, averaged over SD-RM1 
speakers, within each 25 sentence portion. (Error reduction figures with 
respect to the relevant control case, for the last 25 sentence portions.) 

Recognized Sentences from 

Experiments RM1 / Development Test Set Red. (%) 

1-25 26-50 51-75 76-100 

SI-109 9.5(0.6) 9.8(0.6) 11.4(0.6) 11.7(0.6) - 

Adapted SI-109 (infinite memory) 9.5(0.6) 9.8(0.6) 11.4(0.6) 11.7(0.6) 0 

Adapted SI-109 (A = .04) 8.2(0.6) 7.6(0.5) 7.8(0.5) 8.6(0.6) 26.5 

Adapted SI-109 (A = .1) 7.4(0.5) 7.0(0.5) 7.6(0.5) 7.4(0.5) 36.8 

Adapted SI-109 (A = .2) 7.7(0.5) 6.7(0.5) 8.2(0.5) 7.8(0.5) 33.3 

Unsupervised adapted SI-109 (A=.l) 7.3(0.5) 7.1(0.5) 7.3(0.5) 7.7(0.5) 34.2 

Modified SI-109 11.2(0.6) 11.7(0.6) 13.8(0.7) 14.0(0.7) - 

Adapted modified SI-109 (inf. mem.) 11.2(0.6) 11.5(0.6) 13.4(0.7) 13.8(0.7) 1.4 

Adapted modified SH09 (A=.04) 9.9(0.6) 7.5(0.5) 7.8(0.5) 7.5(0.5) 46.4 

Adapted modified SI-109 (A=.l) 8.9(0.6) 6.3(0.5) 7.1(0.5) 6.2(0.5) 55.7 

Adapted modified SI-109 (A=.2) 8.0(0.6) 6.2(0.5) 7.0(0.5) 6.8(0.5) 51.4 

Unsup. adapted modified SI-109 (A=.l) 9.1(0.6) 6.5(0.5) 6.9(0.5) 6.7(0.5) 52.1 

SD-RM1 2.8(0.3) 3.4(0.4) 2.8(0.3) 3.0(0.3) - 

Self-adapted SD-RM1 (inf. mem.) 2.8(0.3) 3.5(0.4) 2.8(0.3) 3.1(0.3) -3.3 

Self-adapted SD-RM1 (A=.04) 3.2(0.4) 3.3(0.3) 3.1(0.3) 3.2(0.3) -6.7 

Self-adapted SD-RM1 (A=.l) 3.3(0.4) 4.0(0.4) 3.8(0.4) 3.8(0.4) -26.7 

Self-adapted SD-RM1 (A=.2) 4.0(0.4) 4.1(0.4) 4.3(0.4) 4.0(0.4) -33.3 

X-spkr/Same-gender (control) 20.9(0.8) 22.0(0.8) 24.8(0.8) 23.2(0.8) - 

X-spkr/S-gend adp. SD-RM2 (inf. mem.) 20.6(0.8) 21.7(0.8) 24.2(0.8) 22.1(0.8) 4.7 

X-spkr/S-gend adp. SD-RM2 (A=.04) 17.2(0.8) 11.9(0.6) 12.3(0.6) 10.7(0.6) 53.9 

X-spkr/S-gend adp. SD-RM2 (A=.l) 14.0(0.7) 10.2(0.6) 10.3(0.6) 9.5(0.6) 59.1 

X-spkr/S-gend adp. SD-RM2 (A=.2) 13.0(0.7) 10.3(0.6) 11.3(0.6) 10.7(0.6) 53.9 

U. X-spkr/S-gend adp. SD-RM2 (A=.l) 14.1(0.7) 10.9(0.6) 11.1(0.6) 10.5(0.6) 54.7 

X-spkr/X-gender (control) 91.6(0.6) 95.6(0.4) 93.5(0.5) 94.0(0.5) - 

X-spkr/X-gend adp. SD-RM2 (inf. mem.) 91.4(0.6) 95.8(0.4) 91.4(0.5) 93.3(0.5) .7 

X-spkr/X-gend adp. SD-RM2 (A=.04) 81.0(0.8) 65.8(0.9) 49.6(1.0) 39.2(1.0) 58.3 

X-spkr/X-gend adp. SD-RM2 (A=.l) 67.1(1.0) 42.1(1.0) 26.7(0.9) 20.7(0.8) 78.0 

X-spkr/X-gend adp. SD-RM2 (A=.2) 55.8(1.0) 26.9(0.9) 19.7(0.8) 15.6(0.7) 83.4 

U. X-spkr/X-gend adp. SD-RM2 (A=.l) 74.1(0.9) 51.9(1.0) 35.9(0.9) 30.1(0.9) 68.0        | 
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Figure 2.    Word error rates from Table 1, for the control and \=.l adaptation conditions 
(detail of Figure 1). 

of adaptation (cross-speaker/cross-gender case) can still get a dramatic improvement with unsu- 
pervised adaptation using just 100 sentences, this fact does not imply that convergence is always 
guaranteed. Contrary to the supervised case, an unsupervised adaptation procedure might diverge 
if the starting word error rate is too high. 

All the aforementioned experiments were conducted using non-cross-word semiphone models 
with two observation streams (cepstra and difference cepstra), and although this was convenient 
for the initial research and development phase, the results do not represent the best performance 

achievable with the current Lincoln HMM CSR. Additional SI recognition-time adaptation exper- 
iments were conducted using cross-word triphone models with three observation streams (cepstra, 

difference cepstra, and second difference cepstra), for both the supervised and unsupervised cases, 

and the results show that recognition-time speaker adaptation improves performance for the best 

system as well, with 49.9% word error reduction over the non-adapted SI-109 for the supervised 

case and 45.9% for the unsupervised case, after an adaptation run over 100 sentences for the twelve 
RM1 speakers (Table 2 and Figure 4). 

10 
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Figure 3.    Word error rates from Table 1. Comparison of the supervised and unsupervised 
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Figure 4-    Word error rates from Table 2, for the control and \=.l adaptation conditions. 
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TABLE 2 

Adaptation experiment results for the best configuration of the Lincoln 
tied-mixture HMM CSR (cross-word triphone models, 3 observation 

streams). Word error rate (%) with standard deviations, averaged over 
SD-RM1 speakers, within each 25 sentence portion. (Error reduction figures 

with respect to the control case, for the last 25 sentence portions.). 

Experiments 

Recognized Sentences from 

RM1 / Development Test Set Red. (%) 

1-25 26-50 51-75 76-100 

SI-109 (control) 4.58(.42) 4.65(.41) 5.43(.44) 5.73(.46) - 

Adapted SI-109 (A=.l) 4.05(.40) 3.66(.37) 3.98(.38) 2.87(.33) 49.9 

Unsupervised adapted SI-109 (A=.l) 4.05(.40) 3.73(.37) 4.17(.39) 3.10(.34) 45.9 

12 



4.   SUMMARY AND FUTURE DIRECTIONS 

This research into the supervised/unsupervised recognition-time speaker adaptation of a tied- 
mixture Gaussian CSR confirms the viability of the concept. Infinite training memory and exponen- 
tially decaying training memory approaches to the adaptation of the means of Gaussian mixture 
components have been investigated, and significant performance reductions have been achieved, 
both with the research configured Lincoln HMM CSR, and its best performing configuration. 

Still a number of aspects of the problem remain to be investigated. The exponentially decaying 
memory approach, although achieving very good performance improvements, assigns the same 
weight to the new estimates regardless of the amount of data used to reestimate each Gaussian. 
Actually, the adaptation weight A should be dynamic rather than static, and vary in proportion 
to the amount of data used to reestimate each Gaussian. The rate should also be set high in the 
beginning to have a fast adaptation, and decrease with the total time spent by each speaker using 
the system to improve the recognition performance limit over the course of the adaptation. 

Although this study has examined adaptation of the means of Gaussian mixture components 
only, the joint adaptation of means, variances and tied-mixture weights should be explored as well. 

13 
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